Ariane Launch Window: James Webb Space Telescope Kevin Langone, 2003 NASA Goddard Academy Research Associate Department of Aerospace Engineering Virginia Tech, Blacksburg, VA Principal Investigator: Mark Beckman Flight Dynamics Analysis Branch, Code 595 NASA Goddard Space Flight Center, Greenbelt, MD ## The Project Knowing the Ariane 5's launch parameters, it is instructive to see when during the year (the launch window) would be optimal to launch JWST. The spacecraft will be placed into a large orbit about the Sun-Earth L2 point (an unstable equilibrium point in the Sun-Earth/Moon system) known as a halo orbit. JWST requires an extremely cold (<30 K) environment to operate its optical instruments. L2 provides an ideal place for it to orbit, as the Sun, Earth, and Moon are always in the same direction, allowing JWST to block much of the incoming light with its sunshade. The advantage of the largeamplitude halo orbit is that it prevents eclipses and reduces fuel costs on transfer (as compared with an orbit at L2). Thus, the orbit is calculated for each day of the year, and certain results are extracted for comparison. Mission requirements dictate a minimum ten year lifetime with no eclipses; the times of year when this condition is satisfied are to be determined. In addition to all the data listed in the "Parameters of Interest," complete eclipse reports and the complete satellite file for each day are saved for future use (e.g. to examine a new data element). ### Why the Ariane 5? The status of the shuttle fleet makes its reliability as a launch option uncertain, and the spacecraft's mass (~5400 kg) excludes many expendable launch vehicles. The Ariane 5 ECA heavy payload vehicle offers a potential solution. #### Ariane 5 Launch Parameters - -Launch from Kourou. French Guiana - -Eastward launch towards Africa - -Inclination 12.7 degrees - -Right Ascension of Ascending Node: 157 degrees - -Argument of Perigee: 203.8 degrees - -Perigee Altitude: 306 km ## **Computational Tools** - -Satellite Tool Kit (Astrogator): orbit propagator and differential corrector (allows construction of theoretical orbit) - -STK Connect: allows user to send text commands to STK through an outside program - -Matlab: script file sends Connect commands (provides reusability) and assembles/plots data of interest #### The Model - -Perigee time 12:30 GMT each day of 2011 - -Propagate orbit for ten years - -Sun, Earth, and Moon provide gravitational forces - -Solar radiation pressure included in propagator - -No launches when moon is in the way - -Target perpendicular crossings to create symmetrical orbit #### Parameters of Interest -Sun Angle -Max Y Amplitude -Moon Phase -Max Z Amplitude -Perigee Velocity -Minimum Elongation Angle -C3 Energy -Maximum Elongation Angle -Ecliptic Inclination -Orbit Class -Perigee Right Ascension -Perigee Declination -Total Eclipse Time -Number of Eclipses ### Sample Matlab Code command=[getResultsbase 'Propagate'];rtn=stkExec(conID,command); [t,r]=strtok(rtn(2,:));[t,r]=strtok(r);[xpos,r]=strtok(r); xpos=str2num(xpos); if xpos<-600000 command=[setValuebase 'Target_Sequence' num2str(i) '.Profiles.Targeting_Profile.Results.Vx.Desired .015 km/sec']; stkExec(conID,command); command=['Propagate 'Sat'' startDate'' stopDate]; stkExec(conID,command); command=[getMCSbase 'Target_Sequence' num2str(i) '.Profiles.Targeting_Profile Impulsive_Maneuver Cartesian.X Correction']; rtn=stkExec(conID,command); [val,units]=strtok(rtn); vxcor=str2num(val); command=[getMCSbase 'Target_Sequence' num2str(i) '.Profiles.Targeting_Profile Impulsive Maneuver Cartesian.X Nominal']; rtn=stkExec(conID,command); [val,units]=strtok(rtn); vxnom = str2num(val); vx=vxnom+vxcor; command=[setBurnbase 'Impulsive_Maneuver.Cartesian.X ' num2str(vx,25) ' km/sec']; stkExec(conID,command); command=[setMCSbase 'Target_Sequence' num2str(i) '.Profiles.Targeting_Profile Impulsive_Maneuver Cartesian.X Correction 0 km/sec']; stkExec(conID,command); command=[setValuebase 'Target_Sequence' num2str(i) '.Profiles.Targeting_Profile.Results.Vx.Desired 0 km/sec'];stkExec(conID,command); end # Sample Eclipse Report | Obstruction | Duration (hr) | Stop Time (YYYY/MM/DD) | Start Time (YYYY/MM/DD) | |-------------|---------------|------------------------|-------------------------| | | | | | | Earth | 18.218 | 2012/01/12 01:44:30.56 | 2012/01/11 07:31:24.95 | | Earth | 27.684 | 2012/04/10 06:05:48.60 | 2012/04/09 02:24:46.18 | | Moon | 9.206 | 2012/06/30 03:30:54.55 | 2012/06/29 18:18:33.50 | | Earth | 10.232 | 2012/07/10 13:45:28.35 | 2012/07/10 03:31:32.85 | | Earth | 0.685 | 2012/07/10 14:26:33.50 | 2012/07/10 13:45:28.35 | | Earth | 10.252 | 2012/07/11 00:41:39.62 | 2012/07/10 14:26:33.50 | | Moon | 4.038 | 2012/10/02 20:08:19.32 | 2012/10/02 16:06:02.53 | | Earth | 25.492 | 2012/10/11 08:48:58.42 | 2012/10/10 07:19:28.82 | | Moon | 9.937 | 2012/10/17 18:10:32.15 | 2012/10/17 08:14:18.66 | | Earth | 17.211 | 2013/01/07 15:05:21.65 | 2013/01/06 21:52:40.38 | | Earth | 12.885 | 2013/04/06 19:09:13.97 | 2013/04/06 06:16:09.63 | | Moon | 10.036 | 2013/04/12 11:56:59.61 | 2013/04/12 01:54:48.30 | | Moon | 4.033 | 2014/06/29 05:10:41.47 | 2014/06/29 01:08:44.20 | | Moon | 19.185 | 2014/07/19 02:55:02.37 | 2014/07/18 07:43:57.60 | | Moon | 1.858 | 2015/07/11 22:09:03.39 | 2015/07/11 20:17:34.63 | | | | | | # **Personal Contributions** - -wrote code to extend orbit for ten years - -extracted all data from orbits - -ran program, assembled and plotted data #### **Current Conclusions** - -Perigee velocity, C3 energy, and apoapsis radius are cyclic with moon cycle and highest when moon is near flight path - -Launches near either vernal or autumnal equinox result in eclipses during mission - -Minimum SEV angle increases when launch moves away from equinoxes - -Highest orbit amplitudes occur during the middle of the year - -January, May, June, July, August, November and December are eclipse-free #### Future Work -Expand launch window: find range of times throughout day that produce acceptable launch